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LE'lTER TO THE EDITOR 

On phase diagrams for directed percolation problems? 
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8 Departamento de Fisica, UFF, 24  OOO Niter6i RJ, Brazil 

Received 6 November 1985 

Abstract. We propose a real space renormalisation group scheme for anisotropic directed 
bond petcolation in two dimensions which, differing from previous phenomenological or 
small-cell real space renormalisation groups, is sensitive to the existence of an infinite 
cluster along any lattice direction. This enables us to explore new aspects of the phase 
diagram for the problem, which were not accessible through existing treatments; in par- 
ticular, the crossover exponent between one- and two-dimensional behaviour is shown to 
be exactly one for directed percolation. Numerical estimates are in agreement with known 
inequalities. 

Real space renormalisation group ( RSRG) techniques have been extensively used in 
the study of phase transitions in recent years (for a review see Burkhardt and van 
Leeuwen (1982)). In particular, small-cell RSRG schemes have consistently proven 
their reliability as regards the obtaining of overall features of phase diagrams and 
stability of fixed points in multiparameter spaces. Examples include dilute king and 
Potts magnets (see the review by Stinchcombe (1983)), polymers with and without 
branches (Family 1980), percolation with first- and second-neighbour bonds (Riera et 
a1 1980) and Potts models with first- and second-neighbour interactions (Oliveira et 
a1 1984). However, the proper handling of anisotropy in such schemes has shown to 
be rather tricky: a straightforward extension to 2~ anisotropic bond percolation (Chaves 
et a1 1979, de Magalhles et a1 1981) of an RSRG procedure used for the corresponding 
isotropic problem (see e.g. Oliveira er a1 1980) gives a totally unstable isotropic fixed 
point, contrary to what would be expected on physical grounds (still, the exact critical 
line is obtained in agreement with the result of Sykes and Essam (1963)). Alternative 
procedures have been proposed which overcome this difficulty (Nakanishi et a1 1981, 
Oliveira 1982) and the situation seems to be settled by now. 

In this letter we address a similar (but slightly more subtle) question which arises 
when one allows for directional effects on top of the anisotropic ones. In the context 
of directed percolation (for a review see Kinzel (1983)), the phase diagram for the 
anisotropic bond problem on a square lattice has been obtained by Domany and Kinzel 
(1981) from a phenomenological RG approach (figure 1( a ) ) ;  the results of Oliveira 
(1983) from a small-cell RSRG yielded the flow direction along the critical line as well 
(figure l(6)). On the other hand, from a perturbative solution of master equations 
Grassberger (1983) obtained the phase diagram displayed in figure l(c). Our purposes 
here are: (i) to show how a convenient RSRG scheme can be set up which reproduces 
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Figure 1. Phase diagrams obtained by ( a )  Domany and Kinzel(l981) (adapted from figure 
3 of their paper); ( b )  Oliveira (1983); (c) Grassberger (1983) for 2D directed bond 
percolation on a square lattice. Px, Py denote bond probabilities along x and y directions 
respectively. In ( b ) ,  arrows indicate RG flow directions. P E  ‘percolating’ phase; NP= 
‘non-percolating’ phase. 

the features of Grassberger’s result; and (ii) to provide further insight into the 
peculiarities of RSRG when applied to directed problems. 

We begin by recalling that the origins of the apparent discrepancy between the 
diagram of figure l (c )  and those of figures l ( a )  and l (b)  are not totally unknown. 
In the phenomenological RG of Domany and Kinzel, the ‘strips’ used in renormalisation 
are infinite along the diagonal of the square lattice, which coincides with the ‘easy’, 
or ‘time’, direction only for the isotropic (that is, p x  = p , )  directed problem. Thus, one 
is always observing percolation along the diagonal; allowing p x  # p,, corresponds to 
rotating the easy direction, or ‘rotating the percolating cone’ (Domany and Kinzel 
1981) in the isotropic problem; in this way one can study critical behaviour at an angle 
4 = tan-’((p,/p,) - $ w )  to the easy direction, so for sufficiently high anisotropy the 
percolating cone will fall off the diagonal (even though it may be of infinite extent) 
and the corresponding point on the phase diagram will be classified by the RG as 
belonging to the ‘non-percolating’ region. Accordingly, the RSRG results of Oliveira 
(1983) are interpreted as meaning that his renormalisation group scheme is sensitive 
to percolation along the diagonal direction; a similar interpretation also holds for the 
three-dimensional simple cubic case, to which an extension of this work has been 
performed (Chame et al 1984). Further evidence in favour of this viewpoint comes 
from the easier problem of directed self-avoiding walks, where it has been shown 
exactly that an analogous RSRG procedure indeed gives the exponent related to critical 
behaviour along the ‘easy’ direction (which in that case coincides with the diagonal) 
(de Queiroz 1983). As regards the instability, along the critical line, of the isotropic 
fixed point p x  = p ,  (see figure l (b) )  Oliveira (1983) shows that this is consistent with 
the above interpretation of this RSRG and with Domany and Kinzel’s results, namely 
that critical behaviour along a direction other than the ‘easy’ axis corresponds to the 
qualitatively distinct process which is the broadening of an already infinite cluster, 
Note also that both Domany and Kinzel (1981) and Oliveira (1983) are able to study 
off-diagonal behaviour for the isotropic problem in a few special cases, the former by 
choosing selected strip directions, the latter by using rectangular ( m  x n) cells. 

On the other hand, the approach of Grassberger (1983) is sensitive to the existence 
of an infinite cluster along any direction, not just along the diagonal; this is because 
the quantities sought are the upper and lower angular limits of the percolating cone 
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Figure 2. ( a )  Cell used in our RSRG; here the scaling factor b = 2. ( b )  Renormalised cell. 
For x’ we count all configurations entering the cell in ( a )  at a or b and leaving it at g or 
h ;  for y’ we count all configurations entering at c or d and leaving at a’ or b’. 

(+*), the percolation threshold being defined by 4+ = 4-. Owing to the nature of his 
approach, it is not possible to extract information on critical exponents or on the 
crossovers between different universality classes from the data; this is why an RSRG 
formulation will play a complementary role to that of Grassberger, provided that it 
takes proper account of suitable geometric features of the problem. Our task here is 
to propose such a formulation, and to discuss the physical picture that emerges from 
it. We have made use of cells such as the one shown in figure 2(a) for a scaling factor 
b = 2; apart from the inclusion of bond directionality (and the respective connective 
constraints), these are the same cells already used for the study of undirected anisotropic 
bond percolation (Oliveira 1982). We have performed RSRG transformations for scaling 
factors b = 2 and b = 3; the overall features of the phase diagram thus obtained are 
displayed in figure 3. In addition to the trivial fixed points at (x, y )  = (0,O) and (1, 1) 
we obtain a pair of non-trivial ones, describing one-dimensional behaviour, at A ( 0 , l )  
and B(1,O); finally the isotropic point P(x,=y,) governs the behaviour along the 
critical line ABP. The shape of the phase diagram is then the same as Grassberger’s, 
which means that our RSRG senses an infinite cluster along any direction; this can be 

A 

X B  

Figure 3. Phase diagram (schematic) obtained from the RSRG transformation depicted in 
figure 2. 
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qualitatively understood from the fact that, since we allow any entry point at the 
bottom of the cell (see figure 2) and because of its specific shape, connectivity along 
any direction is accounted for. This is in contrast to the scheme of Oliveira (1983) 
where there is only one entry, at the bottom-left corner of the cell: there, the statistically 
dominant configurations will be those that leave the cell close to the diagonal. 

Also, the stability of P along ABP means that no matter how far the percolating 
cluster is rotated from the diagonal, it will have the same asymptotic behaviour 
(provided that it does not turn one-dimensional; this leaves A and B in a different 
universality class, as it should be). 

Before turning to the detailed description of the critical behaviour observed at P 
we point out an exact result obtained from our RSRG, regarding the crossover between 
one- and two-dimensional behaviour. At both A(0, l )  and B(l, 0), it is easy to show 
(by exactly enumerating the paths that contribute to connectivity) that, for any scaling 
factor b one has ax’lax = ay’/ay = 2b - 1 and ax’/ay =@’/ax = 0. Hence the Jacobian 
matrix is diagonal and has identical eigenvalues ( A ,  = A2 = 2b - 1) at both A and B; 
this means that the crossover exponent 4 (given by In A2/ln A , )  is exactly one. Although 
an identical result has been derived for undirected anisotropic percolation along the 
same lines of reasoning (Oliveira 1982), to our knowledge it has not been obtained 
previously for directed problems. In this connection it is worth noting that, since in 
one dimension one still has the mean-cluster size exponent y = 1 (Reynolds et a1 1977) 
in the directed problem, our results means that 4 d , d - l =  y d - 1  for directed percolation 
at least in d = 2. Whether this still holds true for directed percolation in d > 2 (thus 
generalising the argument of Redner and Coniglio ( 1980) regarding anisotropic undirec- 
ted percolation) is an interesting question which, however, we shall not pursue here. 
Further, we note that in our case 4 = 1 has the meaning that the critical line leaves 
the one-dimensional points A and B at a finite angle with the coordinate axes; this is 
then an exact result, which is already shown in the approximate phase diagram of 
Grassberger (see figure l (c)) .  Finally, since the critical exponent estimate is given by 
v =In b/ln A, and with A = 26 - 1, we see that as b + ~3 one has Y + 1 at both A and 
B, which is the exact value of Y for I D  (directed or undirected) percolation (Reynolds 
et a1 1977). 

Numerical results obtained for the location of the isotropic fixed point P, and 
corresponding eigenvalues, are displayed in table 1. The calculated estimates for the 
critical probability are consistently higher than f (the exact threshold for the undirected 
problem) as it should be, since the spread of connectivity is hampered by directional 

Table 1. Location of the isotropic fixed point P, eigenvalues ofthe linearised RG transforma- 
tion around P and critical exponent estimate U = In b/ln A , .  

b = 2  b = 3  Accepted values 

xp = Y p  0.5021 0.5145 0.644 f O.OOla 
A1 1.9414 2.6604 
A2 0.3164 0.1757 
YP 1.0448 1.1227 1.734*0.002b 

“Kinzel and Yeomans (1981). 
Kinzel (1983). 
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constraints; that they still are somewhat far off the accepted values of -0.64 is 
attributable to the essentially uncontrolled nature of the approximations involved in 
small-cell RSRG calculations. It must be noticed, however, that the situation improves 
somewhat from b = 2 to b = 3; a naive two-point extrapolation based on finite-size 
arguments (Fisher 1971) gives pc(ext) = 0.56. The results of Oliveira (1983) behave 
differently: although closer to the accepted value (varying between 0.671 and 0.684 as 
b goes from 2 to 4), they seem to be moving slightly away from it as b grows; it is 
believed that this trend must be related to the type of approximations referred to above, 
and should be reversed for larger scaling factors. 

As regards the correlation length exponent calculated at P, it is to be compared 
with vII, which describes the divergence of the percolating cluster along the ‘easy’ 
direction and, in two dimensions, has the value -1.73 quoted in table 1 (see e.g. Klein 
and Kinzel (1981) for a discussion of the meaning of vi1 and v,, this latter describing 
the spread of indirect correlations along directions perpendicular to the easy axis). 
This can be seen more easily by invoking the similarity between our phase diagram 
and that of Grassberger (1983), and recalling his definition of the percolation threshold 
as being marked by the existence of a zero-width infinite cone; the direction along 
which the cone first becomes infinite is the ‘easy’ axis (see the discussions in Domany 
and Kinzel (1981) and Oliveira (1983)). Thus its length diverges as Ap-”l~, where Ap 
has the meaning of a distance (in two-dimensional parameter space) from the critical 
boundary. Note also that a third exponent (called v ( 4 )  by Domany and Kinzel(1981), 
believed to be equal to 2 for any 4 # 0) is absent from our considerations. This is 
bound to be so, for v ( 4 )  describes the divergence of the correlation length along 
directions at an angle 4 with the easy axis, so it can only be detected by means of 
‘rotating the percolating cone’ in schemes such as the strips of Domany and Kinzel 
(1981) or the cells of Oliveira (1983) which are sensitive to percolation along a fixed 
direction in space. This is clearly not our case, as already stated above. 

Our estimates for vlI are somewhat smaller than the accepted value of -1.73 (see 
table 1); however, they tend to be larger (and the difference increases from b = 2 to 
b = 3) than their counterparts obtained by using the same cells for undirected bond 
percolation, namely v(b = 2) = 1.042 and v( b = 3) = 1.099 (Riera et a1 1980, Oliveira 
1982), as it should be. A simple two-point extrapolation assuming 1/ v(b) - 1/ v(true) - 
l / ln b (Reynolds et a1 1978, 1980) gives v(true) - 1.29; of course, this must be taken 
into account only as showing a qualitative trend of the exponent, not as having a 
precise numerical meaning. We note that the results of Oliveira (1983) increase from 
1.430 to 1.591 as b varies from 2 to 4; a similar extrapolation of his values gives 
v(true) - 1.77. 

In summary, we have proposed an RSRG scheme for two-dimensional anisotropic 
directed bond percolation which, differing from previous phenomenological or small- 
cell RSRG formulations, is sensitive to the existence of an infinite cluster along any 
direction on the lattice. This enables us to discuss aspects of the phase diagram for 
the problem which are not accessible through existing treatments; the extreme 
anisotropic (one-dimensional) limit has been given special attention, and the crossover 
exponent between one- and two-dimensional behaviour has been shown to be exactly 
one. Although our numerical results at the isotropic fixed point are not particularly 
accurate, they all obey known inequalities. 

We would like to thank P Grassberger for having drawn our attention to this problem. 
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